Detecting influential observations in Liu and modified Liu estimators

dc.contributor.authorErtas, Hasan
dc.contributor.authorErisoglu, Murat
dc.contributor.authorKaciranlar, Selahattin
dc.date.accessioned2020-03-26T18:41:27Z
dc.date.available2020-03-26T18:41:27Z
dc.date.issued2013
dc.departmentSelçuk Üniversitesien_US
dc.description.abstractIn regression, detecting anomalous observations is a significant step for model-building process. Various influence measures based on different motivational arguments are designed to measure the influence of observations through different aspects of various regression models. The presence of influential observations in the data is complicated by the existence of multicollinearity. The purpose of this paper is to assess the influence of observations in the Liu [9] and modified Liu [15] estimators by using the method of approximate case deletion formulas suggested by Walker and Birch [14]. A numerical example using a real data set used by Longley [10] and a Monte Carlo simulation are given to illustrate the theoretical results.en_US
dc.identifier.doi10.1080/02664763.2013.794203en_US
dc.identifier.endpage1745en_US
dc.identifier.issn0266-4763en_US
dc.identifier.issn1360-0532en_US
dc.identifier.issue8en_US
dc.identifier.scopusqualityQ2en_US
dc.identifier.startpage1735en_US
dc.identifier.urihttps://dx.doi.org/10.1080/02664763.2013.794203
dc.identifier.urihttps://hdl.handle.net/20.500.12395/29363
dc.identifier.volume40en_US
dc.identifier.wosWOS:000321609800008en_US
dc.identifier.wosqualityQ4en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherTAYLOR & FRANCIS LTDen_US
dc.relation.ispartofJOURNAL OF APPLIED STATISTICSen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.selcuk20240510_oaigen_US
dc.subjectinfluential observationsen_US
dc.subjectdiagnosticsen_US
dc.subjectmulticollinearityen_US
dc.subjectLiu estimatoren_US
dc.subjectmodified Liu estimatoren_US
dc.titleDetecting influential observations in Liu and modified Liu estimatorsen_US
dc.typeArticleen_US

Dosyalar