L-FUNCTIONS OF ELLIPTIC CURVES AND BINARY RECURRENCES
dc.contributor.author | Luca, Florian | |
dc.contributor.author | Oyono, Roger | |
dc.contributor.author | Yalciner, Aynur | |
dc.date.accessioned | 2020-03-26T18:42:21Z | |
dc.date.available | 2020-03-26T18:42:21Z | |
dc.date.issued | 2013 | |
dc.department | Selçuk Üniversitesi | en_US |
dc.description.abstract | Let L(s; E) = Sigma(n >= 1)a(n)n(-s) be the L-series corresponding to an elliptic curve E defined over Q and u = {u(m)}(m >= 0) be a nondegenerate binary recurrence sequence. We prove that if M-E is the set of n such that a(n) not equal 0 and N-E is the subset of n is an element of M-E such that vertical bar a(n)vertical bar = vertical bar u(m)vertical bar holds with some integer m >= 0, then N-E is of density 0 as a subset of M-E. | en_US |
dc.description.sponsorship | TubitakTurkiye Bilimsel ve Teknolojik Arastirma Kurumu (TUBITAK); Centro de Ciencias Matematicas of the UNAM in Morelia [PAPIIT IN104512]; Marcos Moshinsky Fellowship; projects CONACyT [163787, 193539]; Scientific Research Office (BAP) of Selcuk UniversitySelcuk University | en_US |
dc.description.sponsorship | Work on this paper began during a visit of F. L. to Turkey supported by Tubitak, and continued during a visit of R.O. to the Centro de Ciencias Matematicas of the UNAM in Morelia under Project PAPIIT IN104512. F. L. thanks Tubitak for financial support. F. L. was also supported in part by a Marcos Moshinsky Fellowship and projects CONACyT 163787 and 193539. The work of A.Y. was supported by Tubitak and the Scientific Research Office (BAP) of Selcuk University. | en_US |
dc.identifier.doi | 10.1017/S0004972713000166 | en_US |
dc.identifier.endpage | 519 | en_US |
dc.identifier.issn | 0004-9727 | en_US |
dc.identifier.issn | 1755-1633 | en_US |
dc.identifier.issue | 3 | en_US |
dc.identifier.scopusquality | Q2 | en_US |
dc.identifier.startpage | 509 | en_US |
dc.identifier.uri | https://dx.doi.org/10.1017/S0004972713000166 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12395/29612 | |
dc.identifier.volume | 88 | en_US |
dc.identifier.wos | WOS:000328203100020 | en_US |
dc.identifier.wosquality | Q3 | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.language.iso | en | en_US |
dc.publisher | CAMBRIDGE UNIV PRESS | en_US |
dc.relation.ispartof | BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.selcuk | 20240510_oaig | en_US |
dc.subject | L-functions of elliptic curves | en_US |
dc.subject | linear recurrence sequences | en_US |
dc.title | L-FUNCTIONS OF ELLIPTIC CURVES AND BINARY RECURRENCES | en_US |
dc.type | Article | en_US |