A new hybrid gravitational search-teaching-learning-based optimization method for the solution of economic dispatch of power systems
No Thumbnail Available
Date
2019
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
TUBITAK SCIENTIFIC & TECHNICAL RESEARCH COUNCIL TURKEY
Access Rights
info:eu-repo/semantics/openAccess
Abstract
The economic dispatch problem (EDP) is a complex, constrained, and nonlinear optimization problem. In the EDP, the active power bus should operate between the minimum and maximum bus limits to minimize the fuel cost. In this study, a fast, efficient, and reliable hybrid gravitational search algorithm-teaching learning based optimization (GSA-TLBO) method was proposed for the purpose of solving the EDP in power systems. The proposed method separates the search space into two sections as global and local searching. In the first part, searching was carried out by GSA method effectively to form the second search space. In the second part, the optimum solution was sought in the local search space by the TLBO method. The proposed method was implemented to a constrained benchmark G01 problem. The proposed hybrid method was then applied to the constrained EDP in IEEE 30-bus and IEEE 57-bus test systems and Turkey's 22-bus power system to minimize the fuel cost. Obtained results were compared with other methods. Experimental results show that the proposed method results in shorter, more reliable, and efficient lowest fuel cost solutions. It has been found that the proposed method can be used to solve constrained optimization problems.
Description
Keywords
Hybrid optimization method, gravitational search algorithm, teaching-learning-based optimization algorithm, economic dispatch, power systems
Journal or Series
TURKISH JOURNAL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES
WoS Q Value
Q4
Scopus Q Value
Q3
Volume
27
Issue
4