A hybrid breast cancer detection system via neural network and feature selection based on SBS, SFS and PCA

Küçük Resim Yok

Tarih

2013

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

SPRINGER

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

Two hybrid feature selection methods (SFSP and SBSP) which are composed by combining the sequential forward selection and the sequential backward selection together with the principal component analysis developed by utilizing quadratic discriminant analysis classification algorithmic criteria so as to utilize in the diagnosis of breast cancer fast and effectively are presented in this study. The tenfold cross-validation method has been applied in the algorithm, which is utilized as criteria during the selection of the features. The dimension of the feature space for input has been decreased from 9 to 4 thanks to the selection of these two hybrid features. The Artificial Neural Networks have been used as classifier. The cross-validation method has been preferred also in the phase of this classification as in the case of the selection of the feature in order to increase the reliability of the result. The Wisconsin Breast Cancer Database obtained from the UCI has been utilized so as to determine the correctness of the system suggested. The values of the average correctness of the classification obtained by utilizing a tenfold cross-validation of the two hybrid systems developed earlier are found, respectively, as follows: for SFSP + NN, 97.57 % and for SBSP + NN, 98.57 %. SBSP + NN system has been observed that, among the studies carried out by implementing the cross-validation method for the breast cancer, the result appears to be very promising. The acquired results have revealed that this hybrid system applied by means of reducing dimension is an utilizable system in order to diagnose the diseases faster and more successfully.

Açıklama

Anahtar Kelimeler

Feature selection, Neural network, Breast cancer diagnosis, SFS, SBS, PCA

Kaynak

NEURAL COMPUTING & APPLICATIONS

WoS Q Değeri

Q2

Scopus Q Değeri

Q1

Cilt

23

Sayı

03.04.2020

Künye