Crude Oil Price Forecasting Using XGBoost

dc.contributor.authorGumus, Mesut
dc.contributor.authorKiran, Mustafa S.
dc.date.accessioned2020-03-26T19:34:41Z
dc.date.available2020-03-26T19:34:41Z
dc.date.issued2017
dc.departmentSelçuk Üniversitesien_US
dc.description2017 International Conference on Computer Science and Engineering (UBMK) -- OCT 05-08, 2017 -- Antalya, TURKEYen_US
dc.description.abstractOne of the most important role of economic variables in today's world countries are the price and the change of the price of crude oil. Changes in the price of crude oil have a very critical role in terms of treasury and budget, both in company and state planning. For example, one may choose one of the energy or natural gas indexed energy production plans based on the trend of the crude oil price, for planning to meet the need for electricity next year. Accurate forecasting of the crude oil price and realization of the forecasts based on this forecast will provide savings or gains in government and corporate economies, which can reach billions of dollars. There is a great need for this estimation in countries where crude oil production is low and heavily dependent on crude oil import. In this paper, the parameters which are the factors affecting the crude oil prices will be interpreted using XGBoost, a gradient boosting model, from machine learning libraries and estimation will be made.en_US
dc.description.sponsorshipIEEE Adv Technol Human, Istanbul Teknik Univ, Gazi Univ, Atilim Univ, TBV, Akdeniz Univ, Tmmob Bilgisayar Muhendisleri Odasien_US
dc.identifier.endpage1103en_US
dc.identifier.isbn978-1-5386-0930-9
dc.identifier.scopusqualityN/Aen_US
dc.identifier.startpage1100en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12395/34938
dc.identifier.wosWOS:000426856900208en_US
dc.identifier.wosqualityN/Aen_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.ispartof2017 INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND ENGINEERING (UBMK)en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.selcuk20240510_oaigen_US
dc.subjectcrude oilen_US
dc.subjectforecastingen_US
dc.subjectgradient boosting machine learningen_US
dc.subjectxgboosten_US
dc.titleCrude Oil Price Forecasting Using XGBoosten_US
dc.typeConference Objecten_US

Dosyalar