Short-term load forecasting using fuzzy logic and ANFIS

dc.contributor.authorCevik, Hasan Huseyin
dc.contributor.authorCunkas, Mehmet
dc.date.accessioned2020-03-26T19:07:05Z
dc.date.available2020-03-26T19:07:05Z
dc.date.issued2015
dc.departmentSelçuk Üniversitesien_US
dc.description.abstractThis paper presents short-term load forecasting models, which are developed by using fuzzy logic and adaptive neuro-fuzzy inference system (ANFIS). Firstly, historical data are analyzed and weekdays are grouped according to their load characteristics. Then, historical load, temperature difference and season are selected as inputs. In general literature, fuzzy logic hourly load forecasts are tested in the range a few days or a few weeks. Unlike previous studies, the hourly load forecast is carried out for 1 year. This paper shows that fuzzy logic can give good results in very large test data sets for 1 year. Besides, for countries with large areas, the temperature data taken from only one point would lead to increase the forecasting errors. Therefore, the average of temperature for six cities having the maximum power consumption is weighted average. The mean absolute percentage errors of the fuzzy logic and ANFIS models in terms of prediction accuracy are obtained as 2.1 and 1.85, respectively. The results show that the proposed fuzzy logic and ANFIS models are capable of load forecasting efficiently and produce very close values to the actual data and are the alternative way for short-term load forecasting in Turkey.en_US
dc.identifier.doi10.1007/s00521-014-1809-4en_US
dc.identifier.endpage1367en_US
dc.identifier.issn0941-0643en_US
dc.identifier.issn1433-3058en_US
dc.identifier.issue6en_US
dc.identifier.scopusqualityQ1en_US
dc.identifier.startpage1355en_US
dc.identifier.urihttps://dx.doi.org/10.1007/s00521-014-1809-4
dc.identifier.urihttps://hdl.handle.net/20.500.12395/32551
dc.identifier.volume26en_US
dc.identifier.wosWOS:000358327400007en_US
dc.identifier.wosqualityQ2en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherSPRINGER LONDON LTDen_US
dc.relation.ispartofNEURAL COMPUTING & APPLICATIONSen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.selcuk20240510_oaigen_US
dc.subjectShort-term load forecastingen_US
dc.subjectForecast methodsen_US
dc.subjectFuzzy logicen_US
dc.subjectANFISen_US
dc.titleShort-term load forecasting using fuzzy logic and ANFISen_US
dc.typeArticleen_US

Dosyalar