Knit Products of Some Groups and Their Applications
No Thumbnail Available
Date
2009
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
C E D A M SPA CASA EDITR DOTT ANTONIO MILANI
Access Rights
info:eu-repo/semantics/closedAccess
Abstract
Let G be a group with subgroups A and K (not necessarily normal) such that G = AK and A boolean AND K = {1}. Then G is isomorphic to the knit product, that is, the "two-sided semidirect product" of K by A. We note that knit products coincide with Zappa-Szep products (see [18]). In this paper, as an application of [2, Lemma 3.16], we first define a presentation for the knit product G where A and K are finite cyclic subgroups. Then we give an example of this presentation by considering the (extended) Hecke groups. After that, by defining the Schur multiplier of G, we present sufficient conditions for the presentation of G to be efficient. In the final part of this paper, by examining the knit product of a free group of rank n by an infinite cyclic group, we give necessary and sufficient conditions for this special knit product to be subgroup separable.
Description
Keywords
Journal or Series
RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA
WoS Q Value
Q4
Scopus Q Value
Q4
Volume
121