A swarm intelligence-based hybrid approach for identifying network modules

Küçük Resim Yok

Tarih

2018

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

ELSEVIER

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

Complex network structures, where real-world systems are modelled, contain important information that can be uncovered. Various studies have been carried out, and many methods have been proposed recently to discover such information by using different network analysis techniques. The discovery of meaningful modules in networks is one of these significant works. In this study, a new hybrid method, which is called uniSFLA, is proposed to determine statistically significant modules within the network. Another significant aspect of this study is to use various objective functions as fitness criteria and compare the results obtained from the tests with each other. The aim is to test the success of various objective functions used to investigate network modules and those defined according to different properties in graphs. The proposed algorithm was tested on real-world networks, and the test results were compared with those of other algorithms from published literature. Considering the experimental results, the method suggested in this work produced significant success in terms of both best and average values. Moreover, the accuracy and quality tests of the conformity values obtained for each objective function were performed with four different cluster evaluation criteria. Finally, in addition to the successful results for the uniSFLA algorithm, the comparative test results of appropriate network modules, obtained using modularity and significance functions, were evaluated by means of various tables and graphs. (C) 2017 Elsevier B.V. All rights reserved.

Açıklama

Anahtar Kelimeler

Cluster evaluation, Community detection, Comparative analysis, Modularity, Network modules

Kaynak

JOURNAL OF COMPUTATIONAL SCIENCE

WoS Q Değeri

Q2

Scopus Q Değeri

Q1

Cilt

28

Sayı

Künye