Notes on the (s, t)-Lucas and Lucas Matrix Sequences
dc.contributor.author | Civciv, Haci | |
dc.contributor.author | Turkmen, Ramazan | |
dc.date.accessioned | 2020-03-26T17:27:20Z | |
dc.date.available | 2020-03-26T17:27:20Z | |
dc.date.issued | 2008 | |
dc.department | Selçuk Üniversitesi | en_US |
dc.description.abstract | In this article, defining the matrix extensions of the Fibonacci and Lucas numbers we start a new approach to derive formulas for some integer numbers which have appeared, often surprisingly, as answers to intricate problems, in conventional and in recreational Mathematics. Our approach provides a new way of looking at integer sequences from the perspective of matrix algebra, showing how several of these integer sequences relate to each other. | en_US |
dc.identifier.endpage | 285 | en_US |
dc.identifier.issn | 0381-7032 | en_US |
dc.identifier.scopusquality | Q4 | en_US |
dc.identifier.startpage | 271 | en_US |
dc.identifier.uri | https://hdl.handle.net/20.500.12395/22534 | |
dc.identifier.volume | 89 | en_US |
dc.identifier.wos | WOS:000260018500023 | en_US |
dc.identifier.wosquality | Q4 | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.language.iso | en | en_US |
dc.publisher | CHARLES BABBAGE RES CTR | en_US |
dc.relation.ispartof | ARS COMBINATORIA | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.selcuk | 20240510_oaig | en_US |
dc.subject | Fibonacci numbers | en_US |
dc.subject | Lucas numbers | en_US |
dc.subject | Pell numbers | en_US |
dc.subject | Jacob-sthal numbers | en_US |
dc.subject | Mersenne numbers | en_US |
dc.subject | Fermat numbers | en_US |
dc.title | Notes on the (s, t)-Lucas and Lucas Matrix Sequences | en_US |
dc.type | Article | en_US |