Notes on the (s, t)-Lucas and Lucas Matrix Sequences

dc.contributor.authorCivciv, Haci
dc.contributor.authorTurkmen, Ramazan
dc.date.accessioned2020-03-26T17:27:20Z
dc.date.available2020-03-26T17:27:20Z
dc.date.issued2008
dc.departmentSelçuk Üniversitesien_US
dc.description.abstractIn this article, defining the matrix extensions of the Fibonacci and Lucas numbers we start a new approach to derive formulas for some integer numbers which have appeared, often surprisingly, as answers to intricate problems, in conventional and in recreational Mathematics. Our approach provides a new way of looking at integer sequences from the perspective of matrix algebra, showing how several of these integer sequences relate to each other.en_US
dc.identifier.endpage285en_US
dc.identifier.issn0381-7032en_US
dc.identifier.scopusqualityQ4en_US
dc.identifier.startpage271en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12395/22534
dc.identifier.volume89en_US
dc.identifier.wosWOS:000260018500023en_US
dc.identifier.wosqualityQ4en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherCHARLES BABBAGE RES CTRen_US
dc.relation.ispartofARS COMBINATORIAen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.selcuk20240510_oaigen_US
dc.subjectFibonacci numbersen_US
dc.subjectLucas numbersen_US
dc.subjectPell numbersen_US
dc.subjectJacob-sthal numbersen_US
dc.subjectMersenne numbersen_US
dc.subjectFermat numbersen_US
dc.titleNotes on the (s, t)-Lucas and Lucas Matrix Sequencesen_US
dc.typeArticleen_US

Dosyalar