Case Study in Effects of Color Spaces for Mineral Identification
dc.contributor.author | Baykan, Nurdan Akhan | |
dc.contributor.author | Yılmaz, Nihat | |
dc.contributor.author | Kansun, Gürsel | |
dc.date.accessioned | 2020-03-26T17:47:21Z | |
dc.date.available | 2020-03-26T17:47:21Z | |
dc.date.issued | 2010 | |
dc.department | Selçuk Üniversitesi | en_US |
dc.description.abstract | Color is the first parameter and one of the most powerful and important feature for mineral recognition via image processing. Although there are different color spaces, the most used of these are, three color spaces, namely RGB, HSV and CIELab were compared to find the best color space for the mineral identification in this study. These three color spaces are compared in terms of their suitability for identification. Using these three color space, an artificial neural network is used for the classification of minerals. Optical data of thin sections is acquired from the rotating polarizing microscope stage to classify 5 different minerals, namely, quartz, muscovite, biotite, chlorite, and opaque. The results show that RGB was efficient and suggested as the best color space for identification of minerals. | en_US |
dc.description.sponsorship | TUBITAK (The Scientific and Technological Research Council of Turkey)Turkiye Bilimsel ve Teknolojik Arastirma Kurumu (TUBITAK) | en_US |
dc.description.sponsorship | The authors are grateful to Selcuk University Scientific Research Projects Coordinatorship and TUBITAK (The Scientific and Technological Research Council of Turkey) for press support of the manuscript. | en_US |
dc.identifier.citation | Baykan, N. A., Yılmaz, N., Kansun, G., (2010). Case Study in Effects of Color Spaces for Mineral Identification. Scientific Research and Essays, 5(11), 1243-1253. | |
dc.identifier.endpage | 1253 | en_US |
dc.identifier.issn | 1992-2248 | en_US |
dc.identifier.issue | 11 | en_US |
dc.identifier.scopusquality | N/A | en_US |
dc.identifier.startpage | 1243 | en_US |
dc.identifier.uri | https://hdl.handle.net/20.500.12395/24680 | |
dc.identifier.volume | 5 | en_US |
dc.identifier.wos | WOS:000279559800004 | en_US |
dc.identifier.wosquality | Q3 | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.institutionauthor | Baykan, Nurdan Akhan | |
dc.institutionauthor | Yılmaz, Nihat | |
dc.institutionauthor | Kansun, Gürsel | |
dc.language.iso | en | en_US |
dc.publisher | Academic Journals | en_US |
dc.relation.ispartof | Scientific Research and Essays | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.selcuk | 20240510_oaig | en_US |
dc.subject | Artificial neural networks | en_US |
dc.subject | Mineral | en_US |
dc.subject | Thin section image | en_US |
dc.subject | RGB | en_US |
dc.subject | HSV | en_US |
dc.subject | CIELab | |
dc.title | Case Study in Effects of Color Spaces for Mineral Identification | en_US |
dc.type | Article | en_US |
Dosyalar
Orijinal paket
1 - 1 / 1
Yükleniyor...
- İsim:
- 4680.pdf
- Boyut:
- 1.76 MB
- Biçim:
- Adobe Portable Document Format
- Açıklama:
- Makale Dosyası