Usage of a novel, similarity-based weighting method to diagnose atherosclerosis from carotid artery Doppler signals
Küçük Resim Yok
Tarih
2008
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
SPRINGER HEIDELBERG
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
In this paper, we have proposed a novel similarity-based weighting method (SBWM), which combines similarity measure and weighting based on trend association (WBTA) method proposed by Sun Yi et al. (ICNN&B international conference, vol 1, pp 266-269, 2005). The aim of this study is to improve the classification accuracy of atherosclerosis, which is a common disease among the public. The proposed method consists of three parts: (1) feature extraction part related with atherosclerosis disease using fast Fourier transformation (FFT) modeling and calculation of maximum frequency envelope of sonograms, (2) data pre-processing part using SBWM, including different similarity measures such as cosine amplitude method, max-min method, absolute exponential method, and exponential similarity coefficient, and (3) classification part using artificial immune recognition system (AIRS) and Fuzzy-AIRS classifier algorithms. While AIRS and Fuzzy-AIRS algorithms obtained 71.92 and 78.94% success rates, respectively, the combination of SBWM with classifier algorithms including AIRS and Fuzzy-AIRS obtained 100% success rate on all the similarity measures. These results show that SBWM has produced very promising results in the classification of atherosclerosis from carotid artery Doppler signals. In future, we will use a larger dataset to test the proposed method.
Açıklama
Anahtar Kelimeler
novel similarity-based weighting method, atherosclerosis, carotid artery, fast Fourier transformation, Welch, AIRS, Fuzzy-AIRS, hybrid systems
Kaynak
MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING
WoS Q Değeri
Q2
Scopus Q Değeri
Q2
Cilt
46
Sayı
4