Modelling the Rainfall-Runoff Data of Susurluk Basin
dc.contributor.author | Dorum, Atila | |
dc.contributor.author | Yarar, Alpaslan | |
dc.contributor.author | Sevimli, M. Faik | |
dc.contributor.author | Onüçyıdız, Mustafa | |
dc.date.accessioned | 2020-03-26T18:04:42Z | |
dc.date.available | 2020-03-26T18:04:42Z | |
dc.date.issued | 2010 | |
dc.department | Selçuk Üniversitesi | en_US |
dc.description.abstract | In this study, rainfall runoff relationship was tried to be set up by using Artificial Neural Networks (ANN) and Adaptive Neuro Fuzzy Interference Systems (ANFIS) models at Flow Observation Stations (FOS) on seven streams where runoff measurement has been made for long years in Susurluk Basin. A part of runoff data was used for training of ANN and ANFIS models and the other part was used to test the performance of the models. The performance comparison of the models was made with decisiveness coefficient (R(2)) and Root Mean Squared Errors (RMSE) values. In addition to this, a comparison of ANN and ANFIS with traditional methods was made by setting up Multi-regressional (MR) model. Except some stations, acceptable results such as R(2) value for ANN model and R(2) value for ANFIS model were obtained as 0.7587 and 0.8005, respectively. The high values of predicted errors, belonging to peak values at stations where multi variable flow is seen, affected R(2) and RMSE values negatively. | en_US |
dc.identifier.citation | Dorum, A., Yarar, A., Sevimli, M. F., Onüçyıdız, M., (2010). Modelling the Rainfall-Runoff Data of Susurluk Basin. Expert Systems with Applications, 37(9), 6587-6593. doi: org/10.1016/j.eswa.2010.02.127. | |
dc.identifier.doi | 10.1016/j.eswa.2010.02.127 | en_US |
dc.identifier.endpage | 6593 | en_US |
dc.identifier.issn | 0957-4174 | en_US |
dc.identifier.issue | 9 | en_US |
dc.identifier.scopusquality | Q1 | en_US |
dc.identifier.startpage | 6587 | en_US |
dc.identifier.uri | https://dx.doi.org/10.1016/j.eswa.2010.02.127 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12395/25078 | |
dc.identifier.volume | 37 | en_US |
dc.identifier.wos | WOS:000278424600054 | en_US |
dc.identifier.wosquality | Q1 | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.institutionauthor | Yarar, Alpaslan | |
dc.institutionauthor | Sevimli, M. Faik | |
dc.institutionauthor | Onüçyıdız, Mustafa | |
dc.language.iso | en | en_US |
dc.publisher | PERGAMON-ELSEVIER SCIENCE LTD | en_US |
dc.relation.ispartof | Expert Systems With Applications | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.selcuk | 20240510_oaig | en_US |
dc.subject | Modelling of rainfall-runoff | en_US |
dc.subject | Artificial Neural Networks | en_US |
dc.subject | Neuro fuzzy | en_US |
dc.subject | Susurluk Basin | en_US |
dc.title | Modelling the Rainfall-Runoff Data of Susurluk Basin | en_US |
dc.type | Article | en_US |
Dosyalar
Orijinal paket
1 - 1 / 1
Yükleniyor...
- İsim:
- 5078.pdf
- Boyut:
- 991.25 KB
- Biçim:
- Adobe Portable Document Format
- Açıklama:
- Makale Dosyası