A Fuzzy Clustering Neural Network Architecture for Classification of ECG Arrhythmias
Yükleniyor...
Dosyalar
Tarih
2006
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Pergamon-elsevier Science Ltd
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
Accurate and computationally efficient means of classifying electrocardiography (ECG) arrhythmias has been the subject of considerable research effort in recent years. This study presents a comparative study of the classification accuracy of ECG signals using a well-known neural network architecture named multi-layered perceptron (MLP) with backpropagation training algorithm, and a new fuzzy clustering NN architecture (FCNN) for early diagnosis. The ECG signals are taken from MIT-BIH ECG database, which are used to classify 10 different arrhythmias for training. These are normal sinus rhythm, sinus bradycardia, ventricular tachycardia, sinus arrhythmia, atrial premature contraction, paced beat, right bundle branch block, left bundle branch block, atrial fibrillation and atrial flutter. For testing, the proposed structures were trained by backpropagation algorithm. Both of them tested using experimental ECG records of 92 patients (40 male and 52 female, average age is 39.75 +/- 19.06). The test results suggest that a new proposed FCNN architecture can generalize better than ordinary MLP architecture and also learn better and faster. The advantage of proposed structure is a result of decreasing the number of segments by grouping similar segments in training data with fuzzy c-means clustering.
Açıklama
Anahtar Kelimeler
fuzzy clustering, Fuzzy c-means, Ecg, Arrhythmia, Neural network, Pattern recognition, Multilayer perceptron
Kaynak
Computers in Biology and Medicine
WoS Q Değeri
Q2
Scopus Q Değeri
Q1
Cilt
36
Sayı
4
Künye
Özbay, Y., Ceylan, R., Karlik, B., (2006). A Fuzzy Clustering Neural Network Architecture for Classification of ECG Arrhythmias. Computers in Biology and Medicine, 36(4), 376-388. Doi: 10.1016/j.compbiomed.2005.01.006