Bezier-Bernstein-Durrmeyer type operators

dc.contributor.authorKajla, Arun
dc.contributor.authorAcar, Tuncer
dc.date.accessioned2020-03-26T20:12:43Z
dc.date.available2020-03-26T20:12:43Z
dc.date.issued2019
dc.departmentSelçuk Üniversitesi, Fen Fakültesi, Matematik Bölümüen_US
dc.description.abstractIn this note, we construct the Bezier variant of the Bernstein-Durrmeyer type operators. We present local results, a direct approximation theorem by using the Ditzian-Totik modulus of smoothness and a quantitative Voronovskaja type theorem with the help of the Ditzian-Totik modulus of continuity. The rate of convergence for differential functions whose derivatives are of bounded variation is also established. Finally, we show that the numerical examples which illustrate the authenticity of the theoretical results and the effectiveness of the defined operators.en_US
dc.description.sponsorshipTUBITAK (The Scientific and Technological Research Council of Turkey)Turkiye Bilimsel ve Teknolojik Arastirma Kurumu (TUBITAK) [1002-Project 119F191]en_US
dc.description.sponsorshipThe second author has been partially supported within TUBITAK (The Scientific and Technological Research Council of Turkey) 1002-Project 119F191.en_US
dc.identifier.citationKajla, A., Acar, T. (2019). Bezier-Bernstein-Durrmeyer Type Operators. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 114(1), 31.
dc.identifier.doi10.1007/s13398-019-00759-5en_US
dc.identifier.issn1578-7303en_US
dc.identifier.issn1579-1505en_US
dc.identifier.issue1en_US
dc.identifier.scopusqualityQ1en_US
dc.identifier.urihttps://dx.doi.org/10.1007/s13398-019-00759-5
dc.identifier.urihttps://hdl.handle.net/20.500.12395/37530
dc.identifier.volume114en_US
dc.identifier.wosWOS:000514591000002en_US
dc.identifier.wosqualityQ1en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.institutionauthorAcar, Tuncer
dc.language.isoenen_US
dc.publisherSPRINGER-VERLAG ITALIA SRLen_US
dc.relation.ispartofREVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICASen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.selcuk20240510_oaigen_US
dc.subjectPositive approximation processen_US
dc.subjectBezier operatorsen_US
dc.subjectDegree of approximationen_US
dc.titleBezier-Bernstein-Durrmeyer type operatorsen_US
dc.typeArticleen_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
Arun KAJLA.pdf
Boyut:
329.72 KB
Biçim:
Adobe Portable Document Format
Açıklama:
Full Text Access