Enhanced device efficiency and long-term stability via boronic acid-based self-assembled monolayer modification of ındium tin oxide in a planar perovskite solar cell

Küçük Resim Yok

Tarih

2018

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

AMER CHEMICAL SOC

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

Interfacial engineering is essential for the development of highly efficient and stable solar cells through minimizing energetic losses at interfaces. Self-assembled monolayers (SAMs) have been shown as a handle to tune the work function (WF) of indium tin oxide (ITO), improving photovoltaic cell performance and device stability. In this study, we utilize a new class of boronic acid-based fluorine-terminated SAMs to modify ITO surfaces in planar perovskite solar cells. The SAM treatment demonstrates an increase of the WF of ITO, an enhancement of the short-circuit current, and a passivation of trap states at the ITO/[poly(3,4ethylenedioxylenethiophene):poly(styrenesulfonic acid)] interface. Device stability improves upon SAM modification, with efficiency decreasing only 20% after one month. Our work highlights a simple treatment route to achieve hysteresis-free, reproducible, stable, and highly efficient (16%) planar perovskite solar cells.

Açıklama

Anahtar Kelimeler

perovskite, solar Cell, interface engineering, surface modification, SAM treatment, long-term stability

Kaynak

ACS APPLIED MATERIALS & INTERFACES

WoS Q Değeri

Q1

Scopus Q Değeri

Q1

Cilt

10

Sayı

35

Künye