Analysis approach to finite monoids
Küçük Resim Yok
Tarih
2013
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
SPRINGER INTERNATIONAL PUBLISHING AG
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
In a previous paper by the authors, a new approach between algebra and analysis has been recently developed. In detail, it has been generally described how one can express some algebraic properties in terms of special generating functions. To continue the study of this approach, in here, we state and prove that the presentation which has the minimal number of generators of the split extension of two finite monogenic monoids has different sets of generating functions (such that the number of these functions is equal to the number of generators) that represent the exponent sums of the generating pictures of this presentation. This study can be thought of as a mixture of pure analysis, topology and geometry within the purposes of this journal. AMS Subject Classification: 11B68, 11S40, 12D10, 20M05, 20M50, 26C05, 26C10.
Açıklama
Anahtar Kelimeler
efficiency, p-Cockcroft property, split extension, generating functions, Stirling numbers, array polynomials
Kaynak
FIXED POINT THEORY AND APPLICATIONS
WoS Q Değeri
Q1
Scopus Q Değeri
Q2