Analysis approach to finite monoids

dc.contributor.authorCevik, A. Sinan
dc.contributor.authorCangul, I. Naci
dc.contributor.authorSimsek, Yilmaz
dc.date.accessioned2020-03-26T18:41:06Z
dc.date.available2020-03-26T18:41:06Z
dc.date.issued2013
dc.departmentSelçuk Üniversitesien_US
dc.description.abstractIn a previous paper by the authors, a new approach between algebra and analysis has been recently developed. In detail, it has been generally described how one can express some algebraic properties in terms of special generating functions. To continue the study of this approach, in here, we state and prove that the presentation which has the minimal number of generators of the split extension of two finite monogenic monoids has different sets of generating functions (such that the number of these functions is equal to the number of generators) that represent the exponent sums of the generating pictures of this presentation. This study can be thought of as a mixture of pure analysis, topology and geometry within the purposes of this journal. AMS Subject Classification: 11B68, 11S40, 12D10, 20M05, 20M50, 26C05, 26C10.en_US
dc.description.sponsorshipResearch Project Office of Uludag UniversityUludag University; Research Project Office of Selcuk UniversitySelcuk University; Research Project Office of Akdeniz UniversityAkdeniz University; TUBITAK (The Scientific and Technological Research Council of Turkey)Turkiye Bilimsel ve Teknolojik Arastirma Kurumu (TUBITAK)en_US
dc.description.sponsorshipAll authors are partially supported by Research Project Offices of Uludag, Selcuk and Akdeniz Universities, and TUBITAK (The Scientific and Technological Research Council of Turkey).en_US
dc.identifier.doi10.1186/1687-1812-2013-15en_US
dc.identifier.issn1687-1812en_US
dc.identifier.scopusqualityQ2en_US
dc.identifier.urihttps://dx.doi.org/10.1186/1687-1812-2013-15
dc.identifier.urihttps://hdl.handle.net/20.500.12395/29219
dc.identifier.wosWOS:000315344900001en_US
dc.identifier.wosqualityQ1en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherSPRINGER INTERNATIONAL PUBLISHING AGen_US
dc.relation.ispartofFIXED POINT THEORY AND APPLICATIONSen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.selcuk20240510_oaigen_US
dc.subjectefficiencyen_US
dc.subjectp-Cockcroft propertyen_US
dc.subjectsplit extensionen_US
dc.subjectgenerating functionsen_US
dc.subjectStirling numbersen_US
dc.subjectarray polynomialsen_US
dc.titleAnalysis approach to finite monoidsen_US
dc.typeArticleen_US

Dosyalar