Multiclass Mineral Recognition Using Similarity Features and Ensembles of Pair-Wise Classifiers

Yükleniyor...
Küçük Resim

Tarih

2010

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

SPRINGER-VERLAG BERLIN

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

Mineral determination is a basis of the petrography Automatic mineral classification based on digital image, analysis is getting very popular To improve classification accuracy we consider similarity features. complex one stage classfiers and two-stage classifiers based on simple pair-wise classification algorithms Results show that employment of two-stage classifieis with proper parameters or K class single layer perceptron are good choices for mineral classification Similarity features with properly selected parameters allow obtaining non-lineal decision boundaries and lead to sizeable decrease in classification error rate

Açıklama

23rd International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems -- JUN 01-04, 2010 -- Cordoba, SPAIN

Anahtar Kelimeler

Mincial Classification, Single Layer Perception, Support Vectors, Two Stage Classifiers, Similarity Features

Kaynak

Trends in Applied Intelligent Systems, PT II, Proceedings

WoS Q Değeri

N/A

Scopus Q Değeri

Q3

Cilt

6097

Sayı

Künye

Kybartas, R., Baykan, N. A., Yılmaz, N., Raudys, S., (2010). Multiclass Mineral Recognition Using Similarity Features and Ensembles of Pair-Wise Classifiers. Lecture Notes in Artificial Intelligence, 6097, 47-56.