Multiclass Mineral Recognition Using Similarity Features and Ensembles of Pair-Wise Classifiers
dc.contributor.author | Kybartas, Rimantas | |
dc.contributor.author | Baykan, Nurdan Akhan | |
dc.contributor.author | Yılmaz, Nihat | |
dc.contributor.author | Raudys, Sarunas | |
dc.date.accessioned | 2020-03-26T18:04:43Z | |
dc.date.available | 2020-03-26T18:04:43Z | |
dc.date.issued | 2010 | |
dc.department | Selçuk Üniversitesi | en_US |
dc.description | 23rd International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems -- JUN 01-04, 2010 -- Cordoba, SPAIN | en_US |
dc.description.abstract | Mineral determination is a basis of the petrography Automatic mineral classification based on digital image, analysis is getting very popular To improve classification accuracy we consider similarity features. complex one stage classfiers and two-stage classifiers based on simple pair-wise classification algorithms Results show that employment of two-stage classifieis with proper parameters or K class single layer perceptron are good choices for mineral classification Similarity features with properly selected parameters allow obtaining non-lineal decision boundaries and lead to sizeable decrease in classification error rate | en_US |
dc.identifier.citation | Kybartas, R., Baykan, N. A., Yılmaz, N., Raudys, S., (2010). Multiclass Mineral Recognition Using Similarity Features and Ensembles of Pair-Wise Classifiers. Lecture Notes in Artificial Intelligence, 6097, 47-56. | |
dc.identifier.endpage | 56 | en_US |
dc.identifier.isbn | 978-3-642-13024-3 | |
dc.identifier.issn | 0302-9743 | en_US |
dc.identifier.scopusquality | Q3 | en_US |
dc.identifier.startpage | 47 | en_US |
dc.identifier.uri | https://hdl.handle.net/20.500.12395/25089 | |
dc.identifier.volume | 6097 | en_US |
dc.identifier.wos | WOS:000281604400006 | en_US |
dc.identifier.wosquality | N/A | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.institutionauthor | Baykan, Nurdan Akhan | |
dc.institutionauthor | Yılmaz, Nihat | |
dc.language.iso | en | en_US |
dc.publisher | SPRINGER-VERLAG BERLIN | en_US |
dc.relation.ispartof | Trends in Applied Intelligent Systems, PT II, Proceedings | en_US |
dc.relation.ispartofseries | Lecture Notes in Artificial Intelligence | |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.selcuk | 20240510_oaig | en_US |
dc.subject | Mincial Classification | en_US |
dc.subject | Single Layer Perception | en_US |
dc.subject | Support Vectors | en_US |
dc.subject | Two Stage Classifiers | en_US |
dc.subject | Similarity Features | en_US |
dc.title | Multiclass Mineral Recognition Using Similarity Features and Ensembles of Pair-Wise Classifiers | en_US |
dc.type | Conference Object | en_US |
Dosyalar
Orijinal paket
1 - 1 / 1
Yükleniyor...
- İsim:
- 5089.pdf
- Boyut:
- 266.55 KB
- Biçim:
- Adobe Portable Document Format
- Açıklama:
- Makale Dosyası