Multiclass Mineral Recognition Using Similarity Features and Ensembles of Pair-Wise Classifiers

dc.contributor.authorKybartas, Rimantas
dc.contributor.authorBaykan, Nurdan Akhan
dc.contributor.authorYılmaz, Nihat
dc.contributor.authorRaudys, Sarunas
dc.date.accessioned2020-03-26T18:04:43Z
dc.date.available2020-03-26T18:04:43Z
dc.date.issued2010
dc.departmentSelçuk Üniversitesien_US
dc.description23rd International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems -- JUN 01-04, 2010 -- Cordoba, SPAINen_US
dc.description.abstractMineral determination is a basis of the petrography Automatic mineral classification based on digital image, analysis is getting very popular To improve classification accuracy we consider similarity features. complex one stage classfiers and two-stage classifiers based on simple pair-wise classification algorithms Results show that employment of two-stage classifieis with proper parameters or K class single layer perceptron are good choices for mineral classification Similarity features with properly selected parameters allow obtaining non-lineal decision boundaries and lead to sizeable decrease in classification error rateen_US
dc.identifier.citationKybartas, R., Baykan, N. A., Yılmaz, N., Raudys, S., (2010). Multiclass Mineral Recognition Using Similarity Features and Ensembles of Pair-Wise Classifiers. Lecture Notes in Artificial Intelligence, 6097, 47-56.
dc.identifier.endpage56en_US
dc.identifier.isbn978-3-642-13024-3
dc.identifier.issn0302-9743en_US
dc.identifier.scopusqualityQ3en_US
dc.identifier.startpage47en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12395/25089
dc.identifier.volume6097en_US
dc.identifier.wosWOS:000281604400006en_US
dc.identifier.wosqualityN/Aen_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.institutionauthorBaykan, Nurdan Akhan
dc.institutionauthorYılmaz, Nihat
dc.language.isoenen_US
dc.publisherSPRINGER-VERLAG BERLINen_US
dc.relation.ispartofTrends in Applied Intelligent Systems, PT II, Proceedingsen_US
dc.relation.ispartofseriesLecture Notes in Artificial Intelligence
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.selcuk20240510_oaigen_US
dc.subjectMincial Classificationen_US
dc.subjectSingle Layer Perceptionen_US
dc.subjectSupport Vectorsen_US
dc.subjectTwo Stage Classifiersen_US
dc.subjectSimilarity Featuresen_US
dc.titleMulticlass Mineral Recognition Using Similarity Features and Ensembles of Pair-Wise Classifiersen_US
dc.typeConference Objecten_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
5089.pdf
Boyut:
266.55 KB
Biçim:
Adobe Portable Document Format
Açıklama:
Makale Dosyası