Classification of transcranial Doppler signals using their chaotic invariant measures

Küçük Resim Yok

Tarih

2007

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

ELSEVIER IRELAND LTD

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

In this study, chaos analysis was performed on the transcranial Doppler (TCD) signals recorded from the temporal region of the brain of 82 patients as well as of 24 healthy people. Two chaotic invariant measures, i.e. the maximum Lyapunov exponent and the correlation dimension, were calculated for the TCD signals after applying nonlinearity and stationarity tests to them. The sonograms obtained via Burg autoregressive (AR) method demonstrated that the chaotic invariant measures represented the unpredictability and complexity levels of the TCD signals. According to the multiple linear regression analysis, the chaotic invariant measures were found to be highly significant for the regression equation which fitted to the data. This result suggested that the chaotic invariant measures could be used for automatically differentiating various cerebrovascular conditions via an appropriate classifier. For comparison purposes, we investigated several different classification algorithms. The k-nearest neighbour algorithm outperformed all the other classifiers with a classification accuracy of 94.44% on the test data. We used the receiver operating characteristic (ROC) curves in order to assess the performance of the classifiers. The results suggested that the classification systems which use the chaotic invariant measures as input have potential in detecting the blood flow velocity changes due to various brain diseases. (c) 2007 Elsevier Ireland Ltd. All rights reserved.

Açıklama

Anahtar Kelimeler

transcranial Doppler signals, nonlinear analysis, chaotic measures, classification, NEFCLASS, decision trees, K-nearest neighbour, multilayer perceptron

Kaynak

COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE

WoS Q Değeri

Q2

Scopus Q Değeri

Q1

Cilt

86

Sayı

2

Künye