Detection of microcalcification in digitized mammograms with multistable cellular neural networks using a new image enhancement method: automated lesion intensity enhancer (ALIE)

Küçük Resim Yok

Tarih

2015

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

TUBITAK SCIENTIFIC & TECHNICAL RESEARCH COUNCIL TURKEY

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

Microcalcification detection is a very important issue in early diagnosis of breast cancer. Generally physicians use mammogram images for this task; however, sometimes analyzing these images become a hard task because of problems in images such as high brightness values, dense tissues, noise, and insufficient contrast level. In this paper, we present a novel technique for the task of microcalcification detection. This technique consists of three steps. The first step is focused on removing pectoral muscle and unnecessary parts from the mammogram images by using cellular neural networks (CNNs), which makes this a novel process. In the second step, we present a novel image enhancement technique focused on enhancing lesion intensities called the automated lesion intensity enhancer (ALIE). In the third step, we use a special CNN structure, named multistable CNNs. After applying the combination of these methods on the MIAS database, we achieve 82.0% accuracy, 90.9% sensitivity, and 52.2% specificity values.

Açıklama

Anahtar Kelimeler

Mammogram, microcalcification, cellular neural networks, image processing, image enhancement, automated lesion intensity enhancer, pectoral muscle

Kaynak

TURKISH JOURNAL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES

WoS Q Değeri

Q4

Scopus Q Değeri

Q3

Cilt

23

Sayı

3

Künye