Penternary chalcogenides nanocrystals as catalytic materials for efficient counter electrodes in dye-synthesized solar cells
Küçük Resim Yok
Tarih
2016
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
NATURE PUBLISHING GROUP
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
The penternary chalcogenides Cu2CoSn(SeS)(4) and Cu2ZnSn(SeS)(4) were successfully synthesized by hot-injection method, and employed as a catalytic materials for efficient counter electrodes in dye-synthesized solar cells (DSSCs). The structural, compositional, morphological and optical properties of these pentenary semiconductors were characterized by X-ray diffraction (XRD), Raman spectroscopy, transmission electron microscopy (TEM), energy-dispersive spectrometer (EDS) and ultraviolet-visible (UV-Vis) spectroscopy. The Cu2CoSn(SeS)(4) and Cu2ZnSn(SeS)(4) nanocrystals had a single crystalline, kesterite phase, adequate stoichiometric ratio, 18-25 nm particle sizes which are forming nanospheres, and band gap energy of 1.18 and 1.45 eV, respectively. Furthermore, the electrochemical impedance spectroscopy and cyclic voltammograms indicated that Cu2CoSn(SeS)(4) nanocrystals as counter electrodes exhibited better electrocatalytic activity for the reduction of iodine/iodide electrolyte than that of Cu2ZnSn(SeS)(4) nanocrystals and conventional platinum (Pt). The photovoltaic results demonstrated that DSSC with a Cu2CoSn(SeS)(4) nanocrystals-based counter electrode achieved the best efficiency of 6.47%, which is higher than the same photoanode employing a Cu2ZnSn(SeS)(4) nanocrystals (3.18%) and Pt (5.41%) counter electrodes. These promising results highlight the potential application of penternary chalcogen Cu2CoSn(SeS)(4) nanocrystals in low-cost, high-efficiency, Pt-free DSSCs.
Açıklama
Anahtar Kelimeler
Kaynak
SCIENTIFIC REPORTS
WoS Q Değeri
Q1
Scopus Q Değeri
Q1
Cilt
6