The effects of stacking sequence on drilling machinability of filament wound hybrid composite pipes: Part-1 mechanical characterization and drilling tests

Küçük Resim Yok

Tarih

2020

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Elsevier Ltd

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

In the first part of this two-part comprehensive study, mechanical properties and machinability characteristic of filament wound hybrid composite pipes with various stacking sequences of glass and carbon fibers (Glass-Carbon-Glass (GCG), Carbon-Glass-Glass (CGG), and Glass-Glass-Carbon (GGC)) were investigated experimentally. In order to determine the mechanical properties of the pipes, hardness test (Shore D), ring tensile test (ASTM D2290), and burst test (ASTM D1599) were carried out. Machinability tests were performed at various feed rates (50, 150, 250 and 350 mm/min) and spindle speeds (796, 1592, 2388 and 3184 rpm) using with and without a back-up. The results showed that stacking of the carbon layer between two glass layers (GCG) presented better performance in terms of mechanical properties and machinability characteristic. The maximum ring tensile stress of GCG specimen is 27% and 19% higher than those of GGC and CGG specimens, respectively. On the other hand, the lowest thrust forces measured during the drilling of GCG specimen while the GGC represented highest values. In addition, the use of back-up led to an increase in thrust force. The highest increase was observed in GGC sample. In GGC sample, a change in a spindle speed increased thrust force by 18–35%, while a change in feed rate increased thrust force by 20–30%. © 2020 Elsevier Ltd

Açıklama

Anahtar Kelimeler

Composite hybrid pipe, Composite pipe, Drilling, Filament winding, Machinability, Stacking sequence

Kaynak

Composites Part B: Engineering

WoS Q Değeri

Q1

Scopus Q Değeri

Q1

Cilt

186

Sayı

Künye