On Unitary Analogs of GCD Reciprocal LCM Matrices
Dosyalar
Tarih
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Erişim Hakkı
Özet
A divisor d is an element of Z(+) of n is an element of Z(+) is said to be a unitary divisor of n if (d, n/d)=1. In this article we examine the greatest common unitary divisor (GCUD) reciprocal least common unitary multiple (LCUM) matrices. At first we concentrate on the difficulty of the non-existence of the LCUM and we present three different ways to overcome this difficulty. After that we calculate the determinant of the three GCUD reciprocal LCUM matrices with respect to certain types of functions arising from the LCUM problematics. We also analyse these classes of functions, which may be referred to as unitary analogs of the class of semimultiplicative functions, and find their connections to rational arithmetical functions. Our study shows that it does make a difference how to extend the concept of LCUM.