On generalized Fibonacci and Lucas polynomials

Küçük Resim Yok

Tarih

2009

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

PERGAMON-ELSEVIER SCIENCE LTD

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

Let h(x) be a polynomial with real coefficients. We introduce h(x)-Fibonacci polynomials that generalize both Catalan's Fibonacci polynomials and Byrd's Fibonacci polynomials and also the k-Fibonacci numbers, and we provide properties for these h(x)-Fibonacci polynomials. We also introduce h(x)-Lucas polynomials that generalize the Lucas polynomials and present properties of these polynomials. In the last section we introduce the matrix Q(h)(x) that generalizes the Q-matrix [GRAPHICS] whose powers generate the Fibonacci numbers. (C) 2009 Elsevier Ltd. All rights reserved.

Açıklama

Anahtar Kelimeler

Kaynak

CHAOS SOLITONS & FRACTALS

WoS Q Değeri

Q1

Scopus Q Değeri

Q1

Cilt

42

Sayı

5

Künye