On generalized Fibonacci and Lucas polynomials
Küçük Resim Yok
Tarih
2009
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
PERGAMON-ELSEVIER SCIENCE LTD
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
Let h(x) be a polynomial with real coefficients. We introduce h(x)-Fibonacci polynomials that generalize both Catalan's Fibonacci polynomials and Byrd's Fibonacci polynomials and also the k-Fibonacci numbers, and we provide properties for these h(x)-Fibonacci polynomials. We also introduce h(x)-Lucas polynomials that generalize the Lucas polynomials and present properties of these polynomials. In the last section we introduce the matrix Q(h)(x) that generalizes the Q-matrix [GRAPHICS] whose powers generate the Fibonacci numbers. (C) 2009 Elsevier Ltd. All rights reserved.
Açıklama
Anahtar Kelimeler
Kaynak
CHAOS SOLITONS & FRACTALS
WoS Q Değeri
Q1
Scopus Q Değeri
Q1
Cilt
42
Sayı
5