On generalized Fibonacci and Lucas polynomials

dc.contributor.authorNalli, Ayse
dc.contributor.authorHaukkanen, Pentti
dc.date.accessioned2020-03-26T17:39:25Z
dc.date.available2020-03-26T17:39:25Z
dc.date.issued2009
dc.departmentSelçuk Üniversitesien_US
dc.description.abstractLet h(x) be a polynomial with real coefficients. We introduce h(x)-Fibonacci polynomials that generalize both Catalan's Fibonacci polynomials and Byrd's Fibonacci polynomials and also the k-Fibonacci numbers, and we provide properties for these h(x)-Fibonacci polynomials. We also introduce h(x)-Lucas polynomials that generalize the Lucas polynomials and present properties of these polynomials. In the last section we introduce the matrix Q(h)(x) that generalizes the Q-matrix [GRAPHICS] whose powers generate the Fibonacci numbers. (C) 2009 Elsevier Ltd. All rights reserved.en_US
dc.description.sponsorshipSelcuk University Scientic Research ProjectsSelcuk Universityen_US
dc.description.sponsorshipThis work is supported by coordinating office of Selcuk University Scientic Research Projects.en_US
dc.identifier.doi10.1016/j.chaos.2009.04.048en_US
dc.identifier.endpage3186en_US
dc.identifier.issn0960-0779en_US
dc.identifier.issn1873-2887en_US
dc.identifier.issue5en_US
dc.identifier.scopusqualityQ1en_US
dc.identifier.startpage3179en_US
dc.identifier.urihttps://dx.doi.org/10.1016/j.chaos.2009.04.048
dc.identifier.urihttps://hdl.handle.net/20.500.12395/23716
dc.identifier.volume42en_US
dc.identifier.wosWOS:000269425200073en_US
dc.identifier.wosqualityQ1en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherPERGAMON-ELSEVIER SCIENCE LTDen_US
dc.relation.ispartofCHAOS SOLITONS & FRACTALSen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.selcuk20240510_oaigen_US
dc.titleOn generalized Fibonacci and Lucas polynomialsen_US
dc.typeArticleen_US

Dosyalar